no-img
انجام پروژه متلب |پروژه متلب | انجام پروژه متلب برق | شبیه سازی با متلب

ردیابی تصاویر در ویدیو با کمک استخراج ویژگی ویژوال تصویر | انجام پروژه متلب |پروژه متلب | انجام پروژه متلب برق | شبیه سازی با متلب


انجام پروژه متلب |پروژه متلب | انجام پروژه متلب برق | شبیه سازی با متلب
مطالب ویژه
گزارش خرابی لینک
اطلاعات را وارد کنید .

ادامه مطلب

ردیابی تصاویر در ویدیو با کمک استخراج ویژگی ویژوال تصویر
امتیاز 3.00 ( 1 رای ) ردیابی تصاویر در ویدیو با کمک استخراج ویژگی ویژوال تصویر">
zip
نوامبر 6, 2019
۲۷,۵۰۰ تومان
0 فروش
۲۷,۵۰۰ تومان – خرید

ردیابی تصاویر در ویدیو با کمک استخراج ویژگی ویژوال تصویر


ردیابی تصاویر در ویدیو با کمک استخراج ویژگی ویژوال تصویر: پروژه آماده متلب

 

پروژه آماده متلب : یکی از مسائل مهم و درحال توسعه در پردازش تصویر و بینایی ماشین ، مسألۀ ردیـابی اشـیاء است . در واقع ردیابی اشیاء، نمایش تغییرات موقعیت یک شـئ و دنبـال کـردن آن در یـک دنبالـۀ تصاویر ویدیویی، با یک هدف خاص میباشد.

١-٢) سابقه

پیشینه ایجاد پدیده ردیابی اشیاء به مسائل نظامی بر میگردد، در واقع مسائلی چـون هـدف یابی مخصوصاً اهداف متحرک، ردیابی مسیر موشک شلیک شده برای اطمینان از صحت عمل هدف گیری و یا ردیابی مسیر موشک شلیک شده از سوی دشمن برای جلوگیری از اصابت آن به هدف و یا هدف گیری موشک دشمن در آسمان و مسائلی از این قبیل باعث پدید آمدن یک مقولۀ جدید به نام ردیابی اشیاء در زمینۀ پردازش تصاویر نظامی گردید. این مقوله و جوانب مختلف آن در سالهای اخیر (عمدتاً از ١٩٨٠ به بعد )  مورد توجه ویژه ای قرار گرفته است .

١-٣)کاربردها

پروژه آماده متلب امروزه به دلیل کاربردهای بسیار گسترده ردیابی اشیاء در زمینه های مختلف به جزء زمینـه های نظامی مانند زمینه های اکتشافی در حوزه هوانوردی، فشرده سـازی هوشـمند ویـدئو، مراقبـت ویدئویی، کنترل مبتنی بر بینایی ماشین ، ارتباط مفهومی کامپیوتر با انسان ، تصویربرداری پزشکی و رباتیک ،زیر سطحی، زیر دریا، تعیین مسیر حرکت دسته های پرندگان یا گله های ماهی و…، زمینه های پزشکی مانند ردیابی مسیر دارو و یا حتی اشیاء خارجی قرار داده شده در بدن و بسیاری زمینه های دیگراز جمله جوانب مرتبط با مقوله ردیابی اشیاء، ارائه الگوریتمهایی است که در مقابل پدیـده هایی چون تغییر روشنایی١ محیط ، همپوشانی٢ اشیاء، عدم حرکت اشـیاء بـا سـرعت ثابـت و یـا در راستای یک خط مستقیم و … از پایایی کافی بر خوردار بوده و حتی الامکان قابـل پیـاده سـازی در کاربردهای بی درنگ ٣ باشند.

ارائه چنین الگوریتمهایی در درجه اول نیاز به مطالعه و تحقیق کافی در مورد چگونگی و انواع حرکتهای اشیاء و مفاهیم مرتبط با آنها، انواع روشهای شناسایی حرکت و تخمین حرکت و مزایـا و معایب این روشها نسبت به یکدیگر، مسألۀ حرکت نسبی شئ ، دوربین ، بیان توابع ، روابط ریاضی و هندسی ای که این حرکات را در قالب پارامترهای ریاضی  قابـل تعیـین و تخمـین میـسر سـازد  و

 

همچنین نحوه پارامتری کردن محیط حرکت و شناخت این  مسأله و روشهای فائق آمـدن بـر ایـن مشکلات در ردیابی و … دارد.

١-۴) اهداف پروژه

پروژه آماده متلببا توجه به نیاز رو به گسترش سامانه های ردیاب در کاربردهای گوناگون و مشکلات ذکر شـده در این زمینه و اهمیت کار در زمینه تحقیق و مطالعه سامانه های ردیاب مشخص میشود. در ایـن پروژه سعی شده است ، یک روش توانمند برای ردیابی اشیاء متحرک معرفی شود. دامنه کاربرد ایـن روش بر روی ویدئوهای گرفته شده با دوربین ثابت است و ردیابی بر روی انسان انجام میگیرد.

١- )ساختار پایان نامه

در فصل دوم ، روشهای تخمین حرکت بر پایه ویژگی ومفهوم میـدان حرکـت و بـردار حرکـت و نحوه نمایش آنها که از جمله مفاهیم مهم در زمینۀ تخمین حرکت و ردیابی هستند بیان میشـود.

در ادامه   مفهوم حرکت سه بعدی یک شئ صلب و ساده سازیها وتقریب هایی که برای مدل کردن آن بکار میروند و مزایا و معایب هر یک بیان میشوند.

در فصل سوم ، پدیده شار نوری ب١ه عنوان روش پیشنهادی در دنیای پـردازش تـصویر معرفـی میشود. سپس انواع الگوریتمهای تخمین حرکت دو بعدی که بر پایۀ این معادله پدید آمده انـد بـه همراه روابط و مزایا و معایب مربوط به هر یک معرفی و بررسی میگردند.

فصل چهارم مقایسه روشهای مختلف ونیز نتایج عملی بدسـت آمـده از طریـق الگـوریتم پیـشنهادی

ومعرفی نرم افزار استفاده شده را در بر  میگیرد.

فصل پنجم نیز یک جمع بندی کلی از آنچه در این پایان نامه آمده است خواهیم داشت و به نتیجه گیری از آنچه آورده شده است میپردازیم  در انتها پیشنهاداتی برای انجام کارهـا وتحقیقـات آتـی می آوریم .

از آنجا که در این پروژه روشی برای ردیابی اشیاء متحرک بیان می شود لذا لازم است تا ابتدا روش های مختلف که اساس کار آنها با هم متفاوت است را بیان کنیم .محدودیت های کار برد هر یـک را بیان کنیم .  روش های مختلف در سامانه های ردیاب وجود دارند که عمده آنها ، به دو دستۀ اصـلی طبقه بندی     میشوند: ١) روشهای مبتنی بر ویژگی ٢) روشهای مبتنی بر شدت روشنایی، مـا در این فصل ابتداتخمین حرکت و ردیابی بر اساس ویژگی را بررسی میکنیم . مزایـا و معایـب آنهـا را بیان می کنیم . سپس در فصل بعـد روش مبتنـی بـر روشـنائی را کـه اسـاس پیـاده سـازی وروش پیشنهادی می باشد شرح می دهیم .

٢-٢)روشهای تخمین حرکت دو بعدی بر پایه ویژگی

در روشهای مبتنی بر ویژگی  نخست مشخصاتی از شئ یا اشیائی که باید ردیابی شوند یـا حرکـت آنها تخمین زده شود، در نظـر گرفتـه مـیشـود کـه ایـن مشخـصات بوسـیلۀ کـاربر و یـا بوسـیلۀ الگوریتمهای انتخاب ویژگی تعیین میگردند. شناسایی و ردیابی اشیاء بر پایـۀ همـین مشخـصات و ویژگیها انجام  میشود، به این گونه که در هر فریم از دنبالۀ تصاویر ویدئویی، این ویژگیها جـستجو شده و با تطبیق این ویژگیها در فریمهای متوالی ، پروسۀ ردیابی وتخمین حرکت صورت مـیگیـرد.

وجود روشهای متنوع جستجوی ویژگـی و تطبیـق ، باعـث بوجـود آمـدن طیـف بـسیار وسـیعی از الگوریتمهای ردیابی ویژگی گردیده است . در واقع در روشهای مبتنی بـر ویژگـی دو سـئوال اصـلی مطرح است که باید پاسخ داده شوند: اول اینکه چه مشخـصات و ویژگیهـایی انتخـاب شـوند و دوم اینکه آنها چگونه فریم به فریم ردیابی و دنبال شوند. پاسخ به این دو سئوال ، پایۀ کلیۀ الگوریتمهایی که از روش ویژگی در ردیابی استفاده میکنند تشکیل میدهد.

٢-٣) ردیابی ویژگی

پروژه آماده متلبدر واقع مهمترین دلیل استفاده از روش ردیابی بر پایۀ ویژگی و یا استفاده از آن در کنار یکی از روشهای ردیابی دیگر ایجاد یک الگوریتم ردیابی است که در مقابل تغییرات ناشی از تغییر شـدت روشنایی محیط و یا تغییر زاویۀ دید از قدرت بیشتری برخوردار باشد.

بسیاری از ویژگیها، برای مثال ویژگی لبه ، حساسیت کمتری در مقابـل ایـن تغییـرات دارنـد.

بعضی از ویژگیها مانند ویژگی گوشه نیز به طور محلی دارای قابلیت شناسایی دقیق هستند. مکـان این ویژگیها میتواند مکان مناسبی برای محاسبات هندسی مانند تخمین حرکت دوربین نسبت بـه صحنه باشد. ایجاد یک الگوریتم ردیابی مناسب بر پایۀ ویژگی ، در وهلۀ اول مستلزم شناخت کـافی از ویژگیها و مشخصات شئ ای که میخواهد ردیابی شود است تا بتوان از شناساگرهای متناسب بـا آنها استفاده کرد. اکثر الگوریتمهای ردیابی ویژگی ، یک حلقۀ چهار مرحله ای مطابق شـکل ۵-١ را

دنبال میکنند[١٨]:

۴

١) پیش بینی کردن

۵

٢) شناسایی ویژگی

۶

٣) مطابقت دادن

۷

۴) بازیابی اطلاعات

نخست مکان ویژگی در فریم بعدی بر اساس مکانهای قبلی آن و مدل حرکت پیش بینی می –  شود. سپس تعدادی ویژگی کاندید شناسایی شده و با ویژگی اصلی مطابقت داده مـیشـوند. آنگـاه بهترین تطبیق بر اساس معیار تطبیق بهینه انتخاب میشود. البته الگوریتمهای ردیابی در اینکه چه ویژگیهائی را انتخاب کنند و پیش بینی را چگونه انجام دهند و چه معیار تطبیقی را بکار بگیرند بـا یکدیگر متفاوت هستند.

مرحلۀ پیش بینی بر پایۀ حرکت شئ از یک فریم به فریم بعدی و مدل حرکت انتخابی مـی- باشد که مدل حرکت از مدلهای سـاده ماننـد مـدل سـرعت ثابـت تـا مـدلهای پـارامتری پیچیـده وحرکتهای با توزیع احتمال خاص میتواند باشد.

مرحلۀ تطبیق بر اساس ایجاد رابطه بین مکان اصلی ویژگی و مکانهای پیش بینی شده اسـت یک روش معمول ، ماکزیمم کردن کورولیشن بین قطعه های تصویر در اطراف مکان اصلی ویژگی و کاندیدها است . به عبارت دیگر اختلاف بین ویژگی اصلی و کاندیدها مینیمم شود.

در بسیاری کاربردها، مراحل بالا متناسب با یکدیگر هستند. مثلاً، مدل حرکت اسـتفاده شـده در مرحلۀ پیش بینی، میتواند برای معیار تطبیق نیز بکار رود. همچنین مدل حرکـت بـرای پـیش بینی حضور ویژگی و در نتیجه شناسایی آن نیز میتواند استفاده شود.

اینکه چه ویژگیهائی را برای ردیابی انتخاب کنیم ، کاملاً به نوع کاربرد و نوع تـصاویر بـستگی دارد. البته در سالهای اخیر کارهایی برای شناسایی اتوماتیک ویژگی از طریق یافتن نقاطی که فرض تغییرات وابستۀ محلی را برآورده میکنند انجام شده است که از آن جمله میتوان به روش  Shi and

-Tomasi ١٩٩۴اشاره کرد [٢١،٢٠،١٩].

برای نمونه در [٢٢] ، یک الگوریتم ردیابی بر اساس ویژگی برای پردازش تصاویر زیر دریـا بـا استفاده از روش شناسایی اتوماتیک فوق ارائه گردیده است . پردازش تصاویر زیر دریا به منظور نصب تجهیزات صنعتی، قراردادن اهداف در مسیر و موقعیت از پیش تعیین شده آنها، حفـظ و نگهـداری لوله های زیر دریا، عمل موزائیک بندی وتصویر برداری از کف دریا و غیره صورت میگیرد و از آنجا که ردیابی، یک قسمت اصلی در پردازش تصاویر گرفته شده از زیر دریا بـا اهـداف فـوق مـیباشـد، اهمیت انتخاب درست وصحیح ویژگی در الگوریتم ردیابی بیش از پیش نمایان میگردد. ردیـابی در چنین الگوریتمهایی به معنی تخمین حرکت یک یا چند ناحیه در فریمهای دنبالۀ تصاویر است .

روشهای مبتنی بر ویژگی را بسته به ویژگیهایی که مد نظر قرار میگیرند، مـیتـوان بـه پـنج

دستۀ کلی تقسیم کرد:

 

١)  روشهای مبتنی بر ویژگیهای کلی

٢)  روشهای مبتنی بر ویژگیهای جزئی

٣)  روشهای مبتنی بر ویژگیهای جزئی ـ کلی

۴)  روشهای مبتنی بر همبستگی ویژگیها

۵)  روشهای مبتنی بر یک الگوی خاص

٢-۴) روشهای مبتنی بر ویژگیهای کلی

پروژه آماده متلبویژگیهای کلی، ویژگیهایی مانند محیط ، مساحت ، شکل ، رنگ و مرکز ثقل هـستند. مـشخص است که در روشهایی که از ویژگی محیط یا مساحت استفاده میکنند، شئ مورد نظر باید بـه طـور کامل و بدون همپوشانی با سایر اشیاء در هر فریم ظاهر گردد. زیـرا همپوشـانی آن بـا سـایر اشـیاء ممکن است باعث گم شدن شئ در پروسۀ ردیابی شود. همچنین تنها استفاده کـردن از مشخـصات محیط یا مساحت ، درصد خطای پروسه را افزایش میدهد، چون ممکن است اشیاء دیگـری نیـز بـا همان محیط یا مساحت در فضای تصویر شـده وجـود داشـته باشـند و ایـن امـر لـزوم اسـتفاده از مشخصات دیگری از شئ مورد نظر را در کنار مشخصات محیط یا مساحت ایجاب میکند.

روشهایی که از مشخصات شکل استفاده میکنند نیز نیاز به جداسازی اشیاء از یکدیگر دارنـد و وجود اشیاء متعدد در صحنه و همپوشانی آنها با یکدیگر و همچنین سایه هایی کـه روی یکـدیگر میاندازند، کار شناسایی وردیابی شئ مورد نظر را دشوار میسازد [٢٣] و در بعضی مواقع نیز وجود کلاترهای پس زمینه ، شناسایی داده صحیح از کلاتر را با مـشکل مواجـه مـیکنـد. عملکـرد فیلتـر کالمن که از گسترده ترین روشها در ردیابی اشیاء است ، از جمله مواردی اسـت کـه بـه شـدت بـه حضور چند شئ متحرک در صحنه و وجود کلاتر بستگی دارد. این امر لزوم استفاده از الگوریتمهای ردیابی براساس مشخصۀ شکل که در مقابل کلاتر از قدرت بیشتری برخوردار هستند را نشان مـی- دهد [٢۴].

روشهایی که از مشخصات شکل استفاده مـیکننـد، در الگوریتمهـای شناسـایی صـورت و یـا الگوریتمهای شناسایی انسان کاربرد بسیار زیادی دارند [٢۵]. شکل ٢-٢ نتایج یکی از این روشها را نشان میدهد. در الگوریتم نشان داده شده در شکل ٢-٢، نخست صورت فرد ناحیه بندی شده و در هر ناحیه ، از روی مشخصات شکلی کـه قـبلاً در الگـوریتم منظـور شـده اسـت بـرای مثـال محـل قرارگرفتن ابروها نسبت به چشمها و یا محل و نحوه قرارگیری بینی و لبها نسبت به یکدیگر، نقـاط خاصی جستجو میشوند که در نهایت نقاط یافت شده در این الگوریتم ، مشخـصات صـورت فـرد از جمله گردی صورت ، محدوده چشمها و ابروها، محدوده بینـی و لبهـا و محـدوده موهـا را بـه دقـت مشخص میکنند.

 

خروجی برنامه  متلب:

پروژه آماده متلب۳پروژه آماده متلبپروژه آماده متلبپروژه آماده متلب



برچسب‌ها :
ads

درباره نویسنده

mrk kiani 362 نوشته در انجام پروژه متلب |پروژه متلب | انجام پروژه متلب برق | شبیه سازی با متلب دارد . مشاهده تمام نوشته های

دیدگاه ها


دیدگاهتان را بنویسید